48 research outputs found

    Optical Enhancement of Exoskeleton-Based Estimation of Glenohumeral Angles

    Get PDF
    In Robot-Assisted Rehabilitation (RAR) the accurate estimation of the patient limb joint angles is critical for assessing therapy efficacy. In RAR, the use of classic motion capture systems (MOCAPs) (e.g., optical and electromagnetic) to estimate the Glenohumeral (GH) joint angles is hindered by the exoskeleton body, which causes occlusions and magnetic disturbances. Moreover, the exoskeleton posture does not accurately reflect limb posture, as their kinematic models differ. To address the said limitations in posture estimation, we propose installing the cameras of an optical marker-based MOCAP in the rehabilitation exoskeleton. Then, the GH joint angles are estimated by combining the estimated marker poses and exoskeleton Forward Kinematics. Such hybrid system prevents problems related to marker occlusions, reduced camera detection volume, and imprecise joint angle estimation due to the kinematic mismatch of the patient and exoskeleton models. This paper presents the formulation, simulation, and accuracy quantification of the proposed method with simulated human movements. In addition, a sensitivity analysis of the method accuracy to marker position estimation errors, due to system calibration errors and marker drifts, has been carried out. The results show that, even with significant errors in the marker position estimation, method accuracy is adequate for RAR

    Cutting the cylinder into squares: The square form factor

    Full text link
    In this article we present a method for constructing two-point functions in the spirit of the hexagon proposal, which leads us to propose a "square form factor". Since cutting the square gives us two squares, we can write a consistency condition that heavily constrains such form factors. In particular, we are able to use this constraint to reconstruct the Gaudin through the forest expansion of the determinant appearing in its definition. We also use this procedure to compute the norm of off-shell Bethe states for some simple cases.Comment: 34 pages, 10 figure

    Inverse kinematics for upper limb compound movement estimation in exoskeleton-assisted rehabilitation

    Get PDF
    Robot-Assisted Rehabilitation (RAR) is relevant for treating patients affected by nervous system injuries (e.g., stroke and spinal cord injury) -- The accurate estimation of the joint angles of the patient limbs in RAR is critical to assess the patient improvement -- The economical prevalent method to estimate the patient posture in Exoskeleton-based RAR is to approximate the limb joint angles with the ones of the Exoskeleton -- This approximation is rough since their kinematic structures differ -- Motion capture systems (MOCAPs) can improve the estimations, at the expenses of a considerable overload of the therapy setup -- Alternatively, the Extended Inverse Kinematics Posture Estimation (EIKPE) computational method models the limb and Exoskeleton as differing parallel kinematic chains -- EIKPE has been tested with single DOFmovements of the wrist and elbow joints -- This paper presents the assessment of EIKPEwith elbow-shoulder compoundmovements (i.e., object prehension) -- Ground-truth for estimation assessment is obtained from an optical MOCAP (not intended for the treatment stage) -- The assessment shows EIKPE rendering a good numerical approximation of the actual posture during the compoundmovement execution, especially for the shoulder joint angles -- This work opens the horizon for clinical studies with patient groups, Exoskeleton models, and movements types -

    Análisis biomecánico para confirmar el diagnóstico en neurorrehabilitación

    Full text link
    [ES] En los pacientes con lesión medular cervical (LMC) se ve comprometida en mayor o menor medida la fuerza de las extremidades superiores, lo que se traduce en dependencia para las AVDs. Si la lesión es incompleta, puede preservarse la capacidad de marcha. En este contexto, resulta difícil realizar un diagnóstico clínico correcto y los equipos de fotogrametría constituyen una herramienta de gran valor para objetivar las secuelas motoras. El objetivo es presentar la metodología biomecánica de miembros superiores e inferiores aplicada a un caso de estudio. Se trata de un paciente varón de 61 años que padeció una LMC incompleta de etiología traumática que, previamente, había sufrido un TCE. Mediante fotogrametría se analizaron los recorridos articulares de la cadera, rodilla y tobillo durante los ciclos de la marcha y del hombro, codo y muñeca, así como una serie de índices cinemáticos descriptores del movimiento del miembro superior. Se obtuvo un patrón de marcha muy simétrico en ambos miembros inferiores. Sin embargo, la funcionalidad global y los índices de destreza en ambos miembros superiores presentaron una marcada asimetría entre ellos. Las herramientas biomecánicas evidencian aspectos del control motor no fácilmente visibles con los tests clínicos y que perfeccionan el diagnóstico de los casos complejos.[EN] In cervical spinal cord injured (SCI) patients, upper limbs strength is affected to a greater or lesser extent, producing dependence on the execution of ADLs. If the lesion is incomplete, the gait ability can be preserved. In this context, it is difficult to make a correct clinical diagnosis and the photogrammetry equipments constitute a tool of great value to determine with objectivity motor sequelae. The objective is to present the biomechanics methodology of upper and lower limbs applied to a case study. It is a 61- year-old male patient who suffered an incomplete SCI of traumatic etiology that had previously suffered a traumatic brain injury. Through photogrammetry, the range of motion of the hip, knee and ankle joints were analyzed during the cycles of the gait and the shoulder, elbow and wrist joints, as well as a series of kinematic indices describing the ability and dexterity of the upper limb movement. A very symmetrical gait pattern was obtained in both lower limbs. However, overall functionality and skill indices in both upper limbs present a high asymmetry between them. Biomechanical tools demonstrate aspects of motor control not easily visible with clinical tests and perfect diagnosis of complex casesDe Los Reyes Guzmán, A.; López-Dolado, E.; Pérez-Rizo, E.; Lozano-Berrio, V.; Gil-Agudo, A.; Del Ama Espinosa, A. (2019). Análisis biomecánico para confirmar el diagnóstico en neurorrehabilitación. En 11º Simposio CEA de Bioingeniería. Editorial Universitat Politècnica de València. 49-63. https://doi.org/10.4995/CEABioIng.2019.10045OCS496

    Quantitative assessment based on kinematic measures of functional impairments during upper extremity movements: a review

    Full text link
    Quantitative measures of human movement quality are important for discriminating healthy and pathological conditions and for expressing the outcomes and clinically important changes in subjects' functional state. However the most frequently used instruments for the upper extremity functional assessment are clinical scales, that previously have been standardized and validated, but have a high subjective component depending on the observer who scores the test. But they are not enough to assess motor strategies used during movements, and their use in combination with other more objective measures is necessary. The objective of the present review is to provide an overview on objective metrics found in literature with the aim of quantifying the upper extremity performance during functional tasks, regardless of the equipment or system used for registering kinematic data

    Kinematic analysis of the daily activity of drinking from a glass in a population with cervical spinal cord injury

    Get PDF
    Background Three-dimensional kinematic analysis equipment is a valuable instrument for studying the execution of movement during functional activities of the upper limbs. The aim of this study was to analyze the kinematic differences in the execution of a daily activity such as drinking from a glass between two groups of patients with tetraplegia and a control group. Methods A total of 24 people were separated into three groups for analysis: 8 subjects with metameric level C6 tetraplegia, 8 subjects with metameric level C7 tetraplegia and 8 control subjects (CG). A set of active markers that emit infrared light were positioned on the upper limb. Two scanning units were used to record the sessions. The activity of drinking from a glass was broken down into a series of clearly identifiable phases to facilitate analysis. Movement times, velocities, and the joint angles of the shoulder, elbow and wrist in the three spatial planes were the variables analyzed. Results The most relevant differences between the three groups were in the wrist. Wrist palmar flexion during the back transport phase was greater in the patients with C6 and C7 tetraplegia than in the CG, whereas the highest wrist dorsal flexion values were in forward transport in the subjects with C6 or C7 tetraplegia, who required complete activation of the tenodesis effect to complete grasping. Conclusions A detailed description was made of the three-dimensional kinematic analysis of the task of drinking from a glass in healthy subjects and in two groups of patients with tetraplegia. This was a useful application of kinematic analysis of upper limb movement in a clinical setting. Better knowledge of the execution of this movement in each of these groups allows therapeutic recommendations to be specifically adapted to the functional deficit present. This information can be useful in designing wearable robots to compensate the performance of AVD, such as drinking, in people with cervical SCI

    Definición e implementación de métricas objetivas para la evaluación funcional del miembro superior: aplicación a población con lesión medular cervical

    Full text link
    En personas que padecen una Lesión Medular cervical, la función de los miembros superiores se ve afectada en mayor o menor medida, dependiendo fundamentalmente del nivel de la lesión y de la severidad de la misma. El déficit en la función del miembro superior hace que la autonomía e independencia de las personas se vea reducida en la ejecución de Actividades de la Vida Diaria. En el entorno clínico, la valoración de la función del miembro superior se realiza principalmente con escalas clínicas. Algunas de ellas valoran el nivel de dependencia o independencia en la ejecución de Actividades de la Vida Diaria, como, por ejemplo, el índice de Barthel y la escala FIM (Medida de la Independencia Funcional). Otras escalas, como Jebsen-Taylor Hand Function, miden la función del miembro superior valorando la destreza y la habilidad en la ejecución de determinadas tareas funcionales. Estas escalas son generales, es decir, se pueden aplicar a distintas poblaciones de sujetos y a la presencia de distintas patologías. Sin embargo, existen otras escalas desarrolladas específicamente para valorar una patología concreta, con el objetivo de hacer las evaluaciones funcionales más sensibles a cambios. Un ejemplo es la escala Spinal Cord Independence Measure (SCIM), desarrollada para valorar Lesión Medular. Las escalas clínicas son instrumentos de medida estandarizados, válidos para su uso en el entorno clínico porque se han validado en muestras grandes de pacientes. No obstante, suelen poseer una elevada componente de subjetividad que depende principalmente de la persona que puntúa el test. Otro aspecto a tener en cuenta, es que la sensibilidad de las escalas es alta, fundamentalmente, a cambios groseros en el estado de salud o en la función del miembro superior, de forma que cambios sutiles en el sujeto pueden no ser detectados. Además, en ocasiones, poseen saturaciones en el sistema de puntuación, de forma que mejorías que se puedan producir por encima de un determinado umbral no son detectadas. En definitiva, estas limitaciones hacen que las escalas clínicas no sean suficientes, por sí mismas, para evaluar estrategias motoras del miembro superior durante la ejecución de movimientos funcionales, siendo necesaria la búsqueda de instrumentos de medida que aporten objetividad, complementen las valoraciones y, al mismo tiempo, intenten solventar las limitaciones que poseen las escalas. Los estudios biomecánicos son ejemplos de métodos objetivos, en los que diversas tecnologías se pueden utilizar para recoger información de los sujetos. Una concreción de estos estudios son los estudios cinemáticos. Mediante tecnología optoelectrónica, inercial o electromagnética, estos estudios proporcionan información objetiva acerca del movimiento realizado por los sujetos, durante la ejecución de tareas concretas. Estos sistemas de medida proporcionan grandes cantidades de datos que carecen de una interpretación inmediata. Estos datos necesariamente deben ser tratados y reducidos a un conjunto de variables que, a priori, posean una interpretación más sencilla para ser utilizados en la práctica clínica. Estas han sido las principales motivaciones de esta investigación. El objetivo principal fue proponer un conjunto de índices cinemáticos que, de forma objetiva, valoren la función del miembro superior; y validar los índices propuestos en poblaciones con Lesión Medular, para su uso como instrumentos de valoración en el entorno clínico. Esta tesis se enmarca dentro de un proyecto de investigación: HYPER (Hybrid Neuroprosthetic and Neurorobotic Devices for Functional Compensation and Rehabilitation of Motor Disorders, referencia CSD2009-00067 CONSOLIDER INGENIO 2010). Dentro de este proyecto se lleva a cabo investigación en el desarrollo de modelos, para determinar los requisitos biomecánicos y los patrones de movimiento de los miembros superiores en sujetos sanos y personas con lesión medular. Además, se realiza investigación en la propuesta de nuevos instrumentos de evaluación funcional en el campo de la rehabilitación de los miembros superiores. ABSTRACT In people who have suffered a cervical Spinal Cord Injury, upper limbs function is affected to a greater or lesser extent, depending primarily on the level of the injury and the severity of it. The deficit in the upper limb function reduces the autonomy and independence of persons in the execution of Activities of Daily Living. In the clinical setting, assessment of upper limb function is mainly performed based on clinical scales. Some value the level of dependence or independence in performing activities of daily living, such as the Barthel Index and the FIM scale (Functional Independence Measure). Other scales, such as the Jebsen-Taylor Hand Function, measure upper limb function in terms of the skill and ability to perform specific functional tasks. These scales are general, so can be applied to different populations of subjects and the presence of different pathologies. However, there are other scales developed for a specific injury, in order to make the functional assessments more sensitive to changes. An example is the Spinal Cord Independence Measure (SCIM), developed for people with Spinal Cord Injury. The clinical scales are standardized instruments measure, valid for use in the clinical setting because they have been validated in large patient samples. However, they usually have a high level of subjectivity which mainly depends on the person who scores the test. Another aspect to take into account is the high sensitivity of the scales mainly to gross changes in the health status or upper limb function, so that subtle changes in the subject may not be detected. Moreover, sometimes, have saturations in the scoring system, so that improvements which may occur above a certain threshold are not detected. For these reasons, clinical scales are not enough, by themselves, to assess motor strategies used during movements. So, it’s necessary to find measure instruments that provide objectivity, supplement the assessments and, at the same time, solving the limitations that scales have. Biomechanical studies are examples of objective methods, in which several technologies can be used to collect information from the subjects. One kind of these studies is the kinematic movement analysis. By means of optoelectronics, inertial and electromagnetic technology, these studies provide objective information about the movement performed by the subjects during the execution of specific tasks. These systems provide large quantities of data without easy and intuitive interpretation. These data must necessarily be treated and reduced to a set of variables that, a priori, having a simpler interpretation for their use in the clinical practice. These were the main motivations of this research. The main objective was to propose a set of kinematic indices, or metrics that, objectively, assess the upper limb function and validate the proposed rates in populations with Spinal Cord Injury, for use as assessment tools in the clinical setting. This dissertation is framed within a research project: HYPER (Neurorobotic Devices for Functional Compensation and Rehabilitation of Motor Disorders, grant CSD2009- 00067 CONSOLIDER INGENIO 2010). Within this research project, research is conducted in relation to the biomechanical models development for determining the biomechanical requirements and movement patterns of the upper limb in healthy and people with Spinal Cord Injury. Moreover, research is conducted with respect to the proposed of new functional assessment instruments in the field of upper limb rehabilitation

    Virtual Reality Environment with Haptic Feedback Thimble for Post Spinal Cord Injury Upper-Limb Rehabilitation

    No full text
    Cervical spinal cord injury is damage to the spinal cord that causes temporary or permanent changes in body functions below the site of the injury. In particular, the impairment of the upper limbs limits the patient’s autonomy in the execution of activities of daily living. This paper illustrates the use of a low-cost robot with a virtual reality platform for upper limb rehabilitation of cervical spinal cord injury patients. Vibration and pressure haptic feedback sensations are provided thanks to a custom-made thimble feedback device. The virtual reality platform consists of three different virtual rehabilitation games developed in Unity. They provide the user with the opportunity to interact with the virtual scene using free hands thanks to the data collected by a hand tracking system. During the therapy session, quantitative data about the motor performance are collected. Each virtual reality environment can be modified in settings according to the patients’ needs. A proof of concept was performed with both healthy subjects and spinal cord injured patients to evaluate the platform and its usability. The data saved during the sessions are analyzed to validate the importance of haptic feedback and stored both for patients and therapists to control the performance and the recovery process
    corecore